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Past analyses of bow and arrow dynamics have assumed the string to be inextensible.
This results in predictions of efficiencies that are significantly higher than measured
values (efficiencies over 90% are predicted versus 70% to 85% for measurements,

circa 1960). The present analysis allows for an elastic string. It is found that arrow exit
then takes place when the string and bow limbs still have substantial kinetic energy,
and therefore this energy is unavailable for kinetic energy of the arrow. Moreover, the
potential energy remaining in the string and bow limb system can also reduce the
amount of energy available for the arrow. For the Hickman model of a long bow used
in this study, the elastic string prediction of efficiency is 78%, whereas the inelastic
prediction is 92%. The analysis utilizes a Lagrangian distributed mass formulation to
develop the governing equations of motion and to generate an equivalent point mass
model. The equations of motion were numerically integrated to obtain efficiency,

arrow velocity, virtual masses, string tension, string extension, arrow exit time, string
and limb potential energies, system momentum, and the dynamic force required to
hold the bow handle stationary. Estimates of the effect of air resistance were made and
found to be less than 2% of the total system energy. The vibratory dynamics of the
string and bow limbs subsequent to arrow exit was analyzed. The results of the elastic
string considerations are in reasonable agreement with experimental data and negate

the usual explanation for the long-standing discrepancy between theory and
experiment as due to air resistance and hysteresis losses in the string and bow limbs.

Toxophilus. An thefe thynges althoughe they be
trifles, yet bycaufe you be but a yonge fhoter, I would
not leue them out.

Philologus. An fo you fhal do me mooft pleafure:
The [bow] ftring I trow be the next.

Toxophilus. The next in dede. A thing though it be
Iytle, yet not a little to be regarded. But here in you
mufte be contente to put youre trufte in honeft ftring-
ers. And furely ftringers ought more diligently to be
looked vpon by the officers than ether bower or fletch-
er, bycaufe they may deceyve a fimple man the more
eafelyer.
: Roger Ascham— Toxophilus (1545)

I. INTRODUCTION

Archery technology bloomed in the late 1920s parallel-
ing the rapid advances of other sciences in that period.
However, over the more than four centuries since Roger
Ascham’s! treatise on archery—an Aristotelian-like dis-
cussion between the teacher Toxophilus and student Phi-
lologus—no consideration was given to the effect that string
elasticity might have on the performance of the bow and
arrow system. The “honeft ftringer” has progressed from
sinew, to flax, to dacron over the years, but no systematic
analysis has been devoted toward understanding the con-
sequences of higher string elasticity. The present paper
attempts to eliminate that gap in our understanding.

The bow and arrow system provides a wealth of subjects
amenable to scientific analyses. To illustrate this point, the
following historical synopsis is presented.

Hickman began two decades of scientific studies of the
sport of archery with the publication? in 1929 of his ex-
perimental studies of the velocity and acceleration of an

320 Am. J. Phys. 49(4), April 1981

0002-9505/81/040320-14800.50

arrow subsequent to its release by the archer. Hickman
produced a number of articles concerning static strains and
stresses in the bow, effects of a rigid midsection, static brace
height effects, effect of bow length on arrow velocity, and
a number of similar mechanics related studies. These arti-
cles are not available in the open literature, but were re-
produced in a collection of works? on the technical aspects
of archery published.in a limited edition of 500 copies and
available in some libraries.

Hickman began his studies on the classic English long
bow, a favorite of archers of his time because of its much
earlier success as a weapon in the Hundred Years War.
Through his experimental and mathematical studies he soon
came to the conclusion that the half-round cross sectional
area of the long bow was not optimum for storing energy
at minimum stress levels. This eventually resulted in the
so-called filat bow, with limbs of rectangular cross-section
and widths greater than thicknesses. It was also the pre-
decessor of the modern laminated fiberglass and wood bow
currently used in recreational archery. Hickman’s studies
culminated in 1937 with the publication* of his model of the
long bow, which will be used in the present paper.

With an intensity similar to Hickman, Klopsteg began
a series of studies circa 1930, culminating in a publication?
in 1943 on the physics of bow and arrows. It was there that
he proposed his concept of virtual mass, hinting that the
mass effectively accelerated by the bow to the final arrow
velocity is composed of the arrow mass plus one-third the
mass of the string. The concept of virtual mass has been
clarified in the present paper by identifying the explicit
participation of both the string mass and limb mass in the
dynamics of the bow and arrow system.

Klopsteg’s studies crossed the gamut of the technical
aspects of archery to which physical principles may be ap-
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plied: proper cross section for a bow limb, effects on scores
of aiming errors, a study of instinctive and mechanical
aiming techniques, the flight of the arrow, etc. Of particular
interest were Klopsteg’s studies of the so-called archer’s
paradox. The impulse normal to the axis of the arrow,
caused by the release of the finders from the string as well
as the columnlike force of the string on the arrow during its
acceleration, results in a significant bending of the arrow
shaft as it transits the bow. This allows the arrow to undu-
late around the bow handle and follow a straight course
towards a target without striking the bow handle. The
ability of the arrow to follow such a straight course to the
target requires that its bending mode period be matched to
the time required by the arrow to exit the bow. When not
properly matched, the arrow strikes the bow handle and is
impulsively directed off its intended course. The asym-
metrical (a symmetric arrangement would require the
arrow to shoot through the center of the bow handle) rela-
tionship of the conventional bow and arrow, which results
in an arrow flight toward a designated target, was a paradox
to the archer. Klopsteg explained this paradox and provided
a qualitative understanding of the reasons for matching
arrows to a given bow and archer combination.

There are only five other published technical works of
which the author is aware. Koeber® published an interesting
study, unrelated to the physics of the bow and arrow in
1927. In that study Koeber considered the world distribu-
tion of types of arrow release techniques, i.e., one finger on
the string, two fingers, three fingers, and various types of
mechanical releases such as thumb rings and leather thongs.
The purpose of this study was to shed some light on the
migration of peoples about the planet Earth rather than
understanding the dynamics of bows and arrows. English’
published a study on the flight characteristics of arrows in
1930. Although he showed satisfactory agreement between
his theoretical model and his extensive measurements of
arrow trajectory parameters, the bases of his theoretical
model can be easily attacked as unsound. He assumed, for
example, that the drag force on the arrow was constant,
depending only on the arrow’s initial velocity. Higgins,? in
a paper published in 1933, addressed the same subject using
a more justifiable physical model, again with adequate
agreement with the English experimental evidence, as well
as his own. Schuster® published a model and numerical
analysis of the modern working recurve bow in 1969. The
working recurve bow is one in which the string partially
winds itself around the bow limbs when the bow is in its
relaxed or brace height state. Schuster assumed a massless,
inextensible string in his study. Finally, in 1972, Stoylov et
al. 10 published the results of some measurements of arrow
velocity as a function of draw length. The basic purpose of
this work was to describe two inexpensive methods for
demonstrating the principles of conservation of momentum
and energy to students in the poorly equipped schools of
developing countries. One method involved the use of a
ballistic pendulum made of banana stalk, the other the
measurement of the free-fall range of an arrow released
horizontally. The bow utilized in their study was of primitive
design with an efficiency less than 50%.

Although some of the past works on the technical aspects
of archery have considered the bow string from the points
of view of its mass effect on efficiency, its brace height ef-
fects on arrow velocity, the number of strands required for
a given bow weight (i.e., bow force at full draw), no com-
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prehensive studies of the effect of an elastic string on bow
and arrow performance appear to exist. None of the pub-
lished works alludes to any potential importance of the
elasticity of the string. It is the purpose of the present study
to examine the effects of string elasticity. The importance
of string elasticity can be appreciated from a summary of
the results of the study described here: For an inextensible
string the efficiency of a bow and arrow system has been
shown to be given fairly accurately by the ratio of the arrow
mass to the arrow mass plus one-third the mass of the string.
For a typical arrow and string mass, this efficiency is 91%,
i.e., the arrow carries off 91% of the energy initially stored
in the bow by the effort made by the archer in pulling the
bow to full draw. For the same arrow, bow limb, and bow
string combination, but with an elastic string, the portion
of the energy involved in the arrow flight is only 78% of the
energy stored in the bow limbs and string at full draw; 11%
is bound up in the kinetic energy of the limbs at arrow exit,
9% is in the kinetic energy of the string at arrow exit, and
2% is stored at arrow exit in potential energy in the string
and bow limb system. The effect of air resistance is esti-
mated to be less than 2% of the total energy at full draw.
The air resistance losses were not included in the analysis
that led to the partition of energy summarized above for the
elastic string.

Before embarking on the course that will result in the
numerics discussed above, consider the following qualitative
description of the temporal behavior of a number of pa-
rameters important to bow and arrow dynamics. The pa-
rameters to be discussed are illustrated in Fig. 1. The solid
line parameter profiles resulted from a numerical integra-
tion of the elastic string equations of motion. The dashed
line parameter profiles are qualitative estimates, not drawn
to scale. A parameter subscripted with the letter F signifies
the value of that parameter at the full draw position of the
arrow, the subscript B signifies a value at the brace height
position (a braced bow is one which has been strung, but
with no external forces applied; the brace height is the
distance between the arrow nocking point on the string of
a braced bow and the vertical midpoint of the outside face
of the bow handle riser), and the subscript A4 denotes a value
at arrow exit. Arrow exit is defined to occur when the arrow
acceleration vanishes. The parameter x designates the po-
sition of the arrow nock or aft end of the arrow. As shown
in Fig. 1, this parameter starts at the full draw position x,
transits the brace height position xz (because, during its
dynamic motion, the string is stretched to a length greater
than its brace height length) and, finally, arrow exit occurs
at a position x4, at the time ¢4 when the acceleration X4
vanishes. Subsequent to arrow exit the arrow flies off with
constant velocity as indicated by the solid curve in Fig. 1.
The vibratory motion of the string after arrow exit is de-
picted by the dashed curves. Thus the dashed curve of the
position x describes the motion of the center of the string
subsequent to arrow exit. The center of the string continues
to move in the direction of motion of the arrow until its ve-
locity vanishes. Oscillations then begin in all variables ex-
cept for the arrow, which has exited the bow. This vibratory
motion is damped in a short time by air resistance, hysteresis
losses, and losses of energy to the earth through the archer’s
body. The velocity profile, like the position profile, is a
relatively smooth function of time leading to a final arrow
velocity X4 and the subsequent vibration of the string as
shown in Fig. 1. The acceleration, on the other hand,
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Fig. 1. Temporal profiles of 2 number of parameters important to bow
and arrow dynamics. The subscripts A; B, and F refer to drrow exit, brace
height position, and full draw, respectively; x is the displacement of the
arrow, X the velocity, and ¥ the acceleration; P is the tension in the string;
s and § the length of half the string and its time rate of change, respectively;
¥ is the total potential energy associated with both bow limbs and Vs the
total potential energy of both halves of the string due to its elastic elon-
gation; ¢ is the time after arrow release. The solid portion of the curves
represent values of the parameters prior to arrow exit and were obtained
from the elastic model results. The dashed curves represent bow and string
parameters subsequent to arrow exit. The temporal profiles of the latter
curves are qualitatively correct, but are not drawn to scale along either
the ordinate or time axis.
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undergoes some wild undulations following arrow release,
as a competition for energy takes place among the arrow,
string, and bow limbs. The acceleration finally decreases
to zero at arrow exit. The string tension starts at a full draw
value Pr which is, surprisingly, less than the static string
tension Pg at brace height. The string tension then follows
the acceleration profile fairly closely for some time, until
it begins a dramatic increase as the string advances toward
arrow exit. It is the experience of most archers that although
a bow string might break, the arrow finds its way to the
target apparently unaffected by the breakage. This course
of events undoubtedly results from the fact that the peak
string tension occurs after arrow exit. No unusual phe-
nomena are observed in the variations of the string half-
length s, velocity §, or acceleration §, but the temporal
profiles of the potential energies in the bow limbs V; and
string V; deserve comment. Since arrow exit occurs at a
time when the string is stretched to a length greater than
the brace height length, the potential energy Vs, of the
string at arrow exit is larger than its potential energy V,
at the brace height. Conversely, at arrow exit the limbs are
in a slightly more relaxed position with a potential energy
Vi, lower than the brace height potential ¥ . If the in-
crease in the potential energy of the string V;, — Vi, is
greater than the decrease in the potential energy of the
limbs ¥y, — Vi, (a negative value), then the total potential
energy of the bow limb and string system, V; , — V;, + V.,
— Vg will be unavailable for arrow kinetic energy and the
efficiency of the bow and arrow system will be reduced. This
is indeed the case for the particular bow and arrow pa-
rameters addressed in the quantitative portion of this
study.

The quantitative analysis of the events described above
proceeds by first deriving the Lagrangian for a distributed
mass bow, string, and arrow system of fairly general design.
This is accomplished in Sec. II, where the equations of
motion and the energy equation for the bow and arrow
system are also derived. The Euler-Lagrange formulation
is then utilized in Sec. III to generate an equivalent point-
mass model and force diagrams for the Hickman model of
a long bow. The point-mass model is used to derive ex-
pressions for the virtual mass of the bow, string tension,
system momentum, and bow handle reaction force. The
bow, arrow, and string parameters required for numerical
solutions of the equations of motion are also described in
Sec. I11. In Sec. IV the solution of the equations of motion
and energy for the case of the inextensible string are used
to evaluate a number of parameters such as arrow position,
arrow velocity, string tension, and efficiency at arrow exit.
The subject of the vibratory motion of the bow subsequent
to arrow exit is also treated in Sec. IV. The case of the
elastic string is the subject of Sec. V. In order to obtain
temporal profiles as well as the values of all interesting
parameters at arrow exit, including the-exit time, the
equations of motion were numerically integrated. The re-
sults of the numerical integration are presented in Sec. V
for the same bow and arrow system used for the inelastic
string considerations. The subject of small vibrations of the
bow and elastic string subsequent to arrow release is also
discussed in Sec. V. The effects of air resistance and hys-
teresis losses are considered in Sec. VI and Appendix B. The
conclusions of this analysis are presented in Sec. VIL The
use of the bow and arrow as a teaching aid is discussed in
Appendix A.
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IL. DISTRIBUTED MASS LAGRANGIAN
FORMULATION

The Lagrangian for the bow and arrow system shown
in Fig. 2 will be formed from the kinetic energy of the arrow
(assuming that the mass of the arrow is localized at the
center of thé string), the kinetic energies of the string and
limbs (arrived at assuming the string and limbs to have
known mass distributions), and from the potential energies
of the string and limbs. All motion will be assumed to take
place in the plane of the bow and string, thus avoiding the
complications of the archer’s paradox. It will also be as-
sumed that the bow and arrow system is symmetrical about
the x axis. The latter axis coincides with the axis of the
arrow. The Lagrangian will have two degrees of freedom
which are taken to be the arrow position and the string
halflength. In the coordinate system defined in Fig. 2, the
kinetic energy of the arrow is

TA = (1/2)MX'2,

where M is the mass of the arrow.

The string will be assumed to have a uniform linear mass
density A which must vary with time, if the string is allowed
to stretch. If s is the halflength of the string, then the mass
of the string will be m; = 2As. The point (x;,y5) on the
string can be defined in terms of a variable £ to be a fraction
€ of the string halflength. Then £ = es, where € is a constant
independent of time. The string is assumed to remain
straight under the dynamic forces it will experience. This
assumption is tantamount to assuming infinite longitudinal
and transverse signal velocities in the string. This assump-
tion is discussed further in Sec. VIL

(xBJ o)

N

Fig. 2. Coordinate system for the Lagrangian formulation.
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The kinetic energy of the string is
1
T, = j; Asde (X2 + p?)

where the string coordinates x; and y; are determined from
Fig. 2 to be

xs = x + Esing and y; = £ cose,

so that x;, = x + és{a cos¢ + essing and y, = — es@ sing
+ €5 cose. In terms of the two independent variables,

¢ = ¢Xx + (psjr
where a subscripted dependent variable denotes partial
differentiation with respect to the independent variable.
Substituting these relations into the expression for the string
kinetic energy and carrying out the integration, the string

kinetic energy is found to be a quadratic in the velocities of
the independent variables,

1 1
Ts = 3 ms [(1 + sy cosg + Ssch,’;)xz
. 2 ..
+ [sing + s, cosg + gsztpxcps X§
1 51,
+ 3 1+ s2¢;)53] -

It will be possible to provide a general formulation of the
kinetic energy of the limb, but, to go beyond the expressions
derived below, the configuration of the limbs must be
specified as done, for example, in Sec. III for the Hickman
model. The mass of either of the two limbs can be obtained
from '

me= f dap(@)r@w().

where q is defined in Fig. 2, p is the volume mass density of
the limb, 7 the thickness, and w the width. Obviously, an
even more complicated expression would be necessary, if
one were to consider the composition of the limb in more
detail, e.g., a laminated limb of wood and fiberglass. The
approach employed here assumes an average over such
complexities. The kinetic energy of the limbs then be-
comes

1
=3 J:imbs dq p(9)7(q)w(q)[F(x.5.9)]°,

-where r is displacement of the limb element dqg (see Fig. 2).

Now F = ryx + r$, so that the kinetic energy of the limbs
assumes a quadratc form in the velocities of the independent
variables,

1
TL=3 j:. - dg prw(rix? + 2rorexs + ris?).

The potential energy of the string, again assuming infinite
signal velocities, can be put into the form

Vs = 2k(s — s0)2 — 2k(sp — 50)2,

where k is the elastic constant for the entire string of length
2s, s¢ is the unstretched string halflength, and sz is the
string halflength at brace height. The potential energy of
the string at brace height has been chosen to be zero. Note
that the potential energy of the string is independent of the
arrow position, i.e., the variable x.
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The potential energy of the limbs, just as its kinetic en-
ergy, cannot be detailed without specifying the character-
istics of the limbs. However, it will have the general
form

Vi =Vi(x,5) — Vi(xg.58).

Again, the zero of potential energy is taken to be at the
brace height position.

The Lagrangian for the bow and arrow system can now
be written as

L=:,12‘(M+K1))'C2+';—K2.X'?.S"+%K3§2— VL— Vs,

where the virtual masses of the system are

1
K, =m, (1 + s, cose + —szgo,z,) +2 f dgprwr?,
3 limb

. 2
K> = my (sm«p + s cose + -3-s2gax<ps)
+ 4 f dq pTwryrs,
limb

and

1
K3=—mx(l+s2<p§)+2f dgpTwrl.
3 limb

Note that the integral over limb is half the same integral
over limbs.

The Euler-Lagrange equations of motion are readily
determined from the Lagrangian to be

1
(M+Kpxi+ -;—KZS' + Elefcz + Ky xs

+ %(Kls - K3x)~5.‘2 + V=0,
and

%sze +Ki§ + %(sz — K15)%2 + K3 k6
+ %K3SS‘2 + VLs + Vss = 0.

The first integral of the equations of motion produces the
energy equation

1
‘;‘(M+K1)x2+EK2X‘S'+'12"K3S'2+ VL+ VS=EF,

where Er is total energy stored in the bow limbs and string
at full draw.

In order to proceed one must choose a specific model of
the bow limbs. This will be done in Sec. I11.

III. POINT MASS MODEL FOR THE LONG
BOW

Hickman® modelled the long bow by replacing the
working portions of the bow limbs with a straight, inflexible
limb that rotated about a point at one end of the limb under
a restoring force. This model is depicted in Fig. 3. Each
working limb is assumed to be symmetrical about the x axis
and of length /. The stationary portion of the bow, the
handle riser, is also symmetrical about the x axis and of
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Fig. 3. Hickman stick model of the long bow.

length 2L. As indicated in Fig. 3, the position of the limb
is characterized by the angle 8. Consider the limbs to have
a constant mass density p, constant thickness 7, and to vary
in width uniformly from a width wo 4+ w at the hinge point
to a width wg at the tip or limb nocking point. The mass of
a single working limb is then,

!
mL=pTw0f dq(l +El_ﬂ€)
0 wWo Wol

= pTWoI(l +lﬂ .
2w°

The parameter r = g#, so that the kinetic energy of the
limbs becomes

Ty = ptwy J;qu (1 +:——;—:—;%) g2,
Then, performing the integral with
0 =0.%+ 0,
the kinetic energy of the limbs can be written
T = myBl12(6%%2 + 20,0,%5 + 6252),
where
1 1w 1w
=§(1 +Zw_(l,) (1 +5;v—(') .

Combining this expression with the relationship found
earlier for the kinetic energy of the string, one finds the
following results for the virtual masses of the bow system
that are to be used in the equation of motion,

1
Ki=m; (1 + 5@, cosg + §s2<p§) + 2 m, BI1%6?,
. 2
K> = my (smga + s cosp + §s2¢x¢s) + 4m,3120,6,,
Ki= %—ms(l + 5202) + 2m B1262.
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The potential energy of the limbs in the Hickman model*
is of the form

]
V= ';'KS()I sin 0

(6% - 03),

where 0y is the value of 6 for a string of unstretched
halflength s¢, and 05 is the value of 8 at the brace height for
an elastic string. The parameter « is the spring constant of
the limbs and, as mentioned earlier, ! is the length of the
working portion of the bow limb. This form for the potential
energy of the limbs is discussed in greater detail later in this
section.

Substituting the above expressions for the virtual masses
and potential energies into the equations of motion, it be-
comes apparent after a fairly extensive rearrangement of
the terms, that the equations of motion can be interpreted
as illustrated in the point-mass model shown in Fig. 4. This
point-mass model is obtained by placing the arrow mass and
one-fourth the string mass at the center of the string. The
force acting on that total mass is then the reaction force [M
+ (1/4)m;]% and the string tension force (1/2)dV/ds di-
rected along the string for each string half as shown in Fig.
4. Three-eights of the string mass is placed two-thirds of the
string halflength on each side of the string center. The forces
acting on those masses involve a centrifugal force (3/8)
ms(2/3)s@?, a reaction force (3/8)m;(2/3)s¢, a reaction
force (3/8)m; (2/ 3)§, and a Coriolis force 2(3/8)m;(2/
3)§¢. A mass m; = my (1 + 68)2/368 is to be placed

“on each limb a distance I’ = 681/(1 + 68) from the re-
spective hinge points. Torques, as illustrated in Fig. 4, are

1 dVL
24 de

1 .
M+ 5 ms)x

N

Fig. 4. Point mass model of the Hickman long bow.
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Fig. 5. Rearrangement of forces preserving an overall force and torque
balance.

to act about the hinge; m 1”28 due to the reaction force on
the masses m, and (1/2)dV;/df due to the restoring force
in each of the limbs. Finally, a centrifugal force m 82 acts
on the masses m, while the string tension (1/2)dV,/ds acts
along the string on each bow tip. Note that the moment of
inertia of each limb is m /2 = mBI2.

In Fig. 5 the forces have been rearranged while preserving
an overall force and torque balance to allow a ready deter-
mination of the system momentum p, in the x direction,
bow handle reaction force R (i.e., the force required to
maintain the bow handle stationary), and the string tension
P. These quantities are found to be, after some algebraic
simplifications,

x = (M + mg)x + (1/2)ms(s@ cosp + §sing) ]
— 2m' '8 cosh,
R=(M+m)i+ (1/2)m(s¢ cose + §§in<p + 25¢ cose
— s@2sing) —2m I’ (8 cosf — 62sinb),
1dV;

P= Zd__ 2k(S—So),

or

= [(M + %‘ms) X+ éms (fsimp — @Zsing
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+ s@cose + 25¢ cosw)] / 2sing,

= xcosf + §sin(f + ¢)

Pl

+ (s¢ + 25¢) cos(8 + ¢) + sp2sin(d + w))

+ mLBlé]/sin(O + ).

The first expression for the string tension follows directly
from its potential energy, the second from a balance of
forces at the center of the string, and the third from a bal-
ance of torques about the upper limb hinge point.

The partial derivatives of the angles # and ¢ with respect
to the independent variables x and s are required to deter-
mine the virtual masses, derivatives of the virtual masses,
and the derivatives of the limb potential energy. The req-
uisite relationships can be obtained from the geometry of
the Hickman model shown in Fig. 3. Thus

D — x = Isinf + ssine,
L + I cosfl = scose.
The first-order derivatives are

_ sinfd _cos(f +¢)
Ox= ssin(0 + ¢)’ " ssin(@+ @)
go=——Sme o, __ 1
x Isin(8 + ¢) Isin(fd + ¢)

and the higher-order derivatives can be obtained by partial
differentiation of these expressions.

The final task of this section will be to delineate the
physical characteristics of the bow and arrow system that
will be used for numerical calculations in Secs. IV and V.
In order to obtain numerical solutions, 10 parameters must
be defined for the Hickman model.

We begin by specifying the arrow masstobe M =25 ¢
(385 grain). This is a mass typical of a 70-cm (28-in.)
length, aluminum tubular arrow of outside diameter 0.794
c¢m (20/64 in.) and 0.0330-cm (0.013-in.) wall thickness,
popularly designated as a 20-13 arrow.

The mass of a typical string will be takentobe m; =7 g
(108 grain). Strings are normally whipped near the center
and at the ends, but the string will be assumed to have
uniform linear density. The string will be assumed to have
an unstretched halflength so = 85 cm (full length 67 in.).
Sneler!'! has measured the elastic constants for a number
of strings, resulting in a typical value to be used here of 7000
N/m (50 Ib/in.). This is characteristic of a 10-strand da-
cron string of the length assumed here.

The mass of a typical bow limb will be taken to be m;
= 93 g (1440 grain). This value was arrived at by using the
measured mass density p = 1.4 g/cm? of a short section of
a limb broken from a fiberglass-wood laminated bow, and
with typical values of thickness 7 = 0.865 cm, width at the
tip wo = 1.0 cm, aspect ratio w; /wo = 1.2, and working limb
length / = 48 cm. The aspect ratio of 1.2 yields a value 8
= 0.271. We will use a value of 8y = 30° as the angle made
by the working limb with the vertical for a string of un-
stretched length. The full draw length will be the length of
the arrow of D = 70 cm (28 in.). Finally, the sping constant
of the bow must be chosen. The Hickman model assumed
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the potential energy of the limbs to be proportional to the
square of the deflection and this results in reasonable fits
to the force~draw curves of the bow. The potential energy
of the limbs is assumed to vanish at the brace height. Con-
sequently, the potential must have the form

VL = C(02 - 0%)

The spring constant will be evaluated in terms of the value
it would have for an inelastic string of halflength so. The
spring constant is
_d*v

dx 2 X=Xx0 ’
where the derivative is evaluated at s = 59, ¢ =0, and §
= 0(). Now

K

dvy
dx?

so, evaluating the derivatives from the geometrical rela-
tionship presented earlier, the constant is found to be

C = (1/2)ksol sinfy/ 0o,

and the potential takes the form

= 2C(00,, + 62),

=L, 800 g o
VL 3 KS()I 00 (0 03).

Fitting this expression to measured values for typical bows
results in the spring constant of 620 N/m (3.5 ib/in.) to be
used for the present calculations.

The ten parameters defined above, which must be spec-
ified in order to carry out numerical integrations of the
equations of motion, are summarized in Table 1.

IV. INEXTENSIBLE STRING
CONSIDERATIONS

Before tackling the more complex problem of bow and
arrow dynamics with an elastic string, let us first consider
the inextensible string problem. This will be useful as a base
against which the results of the elastic model can be com-
pared, as well as providing a point of departure for reviewing
past works.

If the string is inelastic, the energy equation and equa-
tions of motion reduce to the following simple expres-
sions,

(1/2)(M + K)%2 + V= E

and

M+ K)i+ (1/2)Kx)'62 + Vi, =0,
Table 1. Typical physical constants for the bow and arrow system.
M Arrow mass 25 g (385 grain)
mg String mass 7 g (108 grain)
S0 String halflength 85cm (33.5in.)
k String elastic constant 7000 N/m (40 1b/in.)
my, Limb mass 93 g (1440 grain)
1 Limb length 48 cm (19 in.)
8 Moment of inertia factor 0.271
D Full draw length 70 cm (28 in.)
K Bow spring constant 620 N/m (3.5 Ib/in.)
bo Bow limb angle 30°
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where the virtual mass is
K = mg[1 + sopx cose + (1/3)s302] + 2m, 31262

Let the subscript 4 denote values of the variables at arrow
exit, which occurs when the acceleration of the arrow van-
ishes, i.e., when X4 = 0, and the arrow separates from the
string. Let ¢4 = Ay and 8,4 = 0y + Af. The geometry
equations then yield to the lowest order in Ag:

Af = so(Ap)?/21sinbo.

The derivatives of § and ¢ required to evaluate the virtual
mass derivative K, 4 at arrow exit are found to be

@xa = —(1 — Ag cosby/sinfg)/so,
8,4 = —Ap/Isindy,

cosf .
$30xxa = — “in 03 + Ae(1 + 3cos26y/sin%y)

SolexxA = (1 - 3A(,0 cosﬁo/sinf)o)/sinﬂo,
while the potential energy derivative becomes .
VLxA = —KSQAQO.

Putting these expressions into the equation of motion, the
angle made by the string with the vertical at arrow exit is
found to be

22 0
Ao = — msxAcoso/ +
¢ ( 6spsinfg ks
msxA

__MsX4 1 _34in2
6505in%0y (1 —3sin26) |-

2my B35
sosin?fq

The efficiency of the bow and arrow system is defined to
be the ratio of the kinetic energy of the arrow at arrow exit
to the energy stored in the bow by the archer in pulling the
bow to full draw. Thus

£ = (1/2)Mx%/EF.

Using the energy equation, the efficiency can be written to
lowest-order terms in Ag as

&= (M/M)(1 — ksjAp?/2EF),
where

M =M+ m;(1+ Agcot 0p)/3 + 2 mSAp? csc? by.

The energy at full draw is given by

Ep= -;'KS()I sm00

(0% - 69),

where 0 and ¢ are determmed from geometry:
D = [sinfr + sgsingr,
I(cosfy — cosfp) = so(1 — coser).
Using the bow and arrow parameters listed in Table I, one

finds from the above equations, the following numerical
results:

£=0.9150, Ap=-5.89X1073,
X4 = 56.0 m/sec (184 ft/sec).

Other quantities of interest are the string tension

mBx%

1 mgx>
P4y=—kso+ Caud -
sosin2fy

2 6505in26y

= 653 N (147 Ib);
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the component of momentum in the x direction,

' 1 mgx 4 cost
=IM+= ¢ — A0
Px4 ( 2 ms) x4 2sinfl
2 114
m 1'% 4 cosfy Ap

Isinfy = 1.645 kgm/sec;

the reaction force on the bow handle,

- R, _ metcotfy 1+4’"L1 = 542 N (122 Ib);
250 ml
and the following:
0r=0.793, @p=0435, Ep=429).

It is interesting to note that slightly before arrow exit, when
the arrow is at the brace height and ¢ = 0, then the limbs
are stationary (6, = 0) and the fraction of the total energy
Er in the kinetic energy of the arrow can readily be deter-
mined from the energy equation to be M/[M + (1/3)m;]
= 0.9146, only slightly smaller than the final arrow exit.
efficiency of 0.9150.

Subsequent to arrow exit from the bow, an amount of
energy (1 — £)EF remains in the bow limbs and string,
causing a vibratory motion which is eventually damped by
air resistance, hysteresis losses, and transfer of energy
through the archer’s body to the earth. For the case of the
inelastic string the energy equation and the equation of
motion are then,

(1/2)Kx2+ V= (1 — £)EF,
Ki+ (1/2)Kx2+ Vi, = 0.
For very small displacements, the equation of motion
reduces to (neglecting dissipation)
(1/3)msx + k(x — x0) = 0,
and the vibration frequency is

=+/3k/m; or fo=282Hz.

If the first-order nonlinear terms are retained, the first
integral of the equation of motion can be written in the di-
mensionless form

cosﬂo

1 —_—
sm00

;2 6m. B )( )2 231 —E)EF .
Kks3 ’

my sin260,/\d

where z = (x — xp)/s¢ and 7 = wef. Numerical integration
of this equation gives a frequency

w=080wy or f=66Hz
The amplitude of the vibration is

22 =2(1 — £)Eg/ksd = (0.128)2
or x — xo = 10.8 cm.

V. ELASTIC STRING CONSIDERATIONS

The theoretical approach used in Sec. IV to analyze the
dynamics of the bow and arrow for the case of an inelastic
string, specifically the technique of evaluating the equations
of motion and energy at arrow exit where the acceleration
X4 vanishes, allows one to determine all the dynamic pa-
rameters of interest at the time of arrow exit with the single
exception of the exit time # 4 itself. For the case of the elastic
string the equations of motion were numerically integrated
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to arrive at values of the efficiency, arrow velocity, string

tension, and other parameters of interest at arrow exit. The -

numerical integration provides, in addition, the time re-
quired for the arrow to exit the bow and temporal profiles
of all variables. The results of such a numerical integration
are summarized in this section.

The arrow, bow limb, and string parameters listed in
Table I were used in the calculation. For the elastic string
calculations, the handle riser halflength L was determined,
assuming an inelastic string, from

L = 50— Icosfly = 43.43 cm.
Since the string is elastic, the relations determining the
static conditions are not the same as for the inextensible

string. For example, the brace height parameters must be
iterated from the equations

k_sinfo 6B

4k 6y sinfp
0p = cos~1[(sp — L)/I] = 0.4401.

The static tension in the string at the brace height is
Pp = 2k(sg — s0) = 260 N (58 Ib).

At full draw an iteration of three equations is required to
determine the static half-string length and the vertical an-
gles O and ¢,

sg=so|l+ = 86.86 cm,

K Sineo BF

= 1+ — = 86.

SE = So ( 4k 0() sin(ﬂp + (pp)) 86.47 cm,
LY, . _ [D*+L2+12-5}
fr = tan—1 |=] + sin~! = 0.7608,
r = tan ( ) sin \ 3] T ) 0.76

D — lsinﬁp

=t 1= """ 7| = X .

g =tan (L +1/ cosﬁp) 0.4409

The static string tension, force that the archer must exert
at the string center (popularly known as the bow weight),
and the energy stored in the limbs and string are determined
from

Pr = 2k(sF — s0) = 205N (46 1b),
Fr = 2Ppsingr = 175.2N (39 Ib),

1 sinfly
Er = —ksol
F > KSo 00

(6% — 0%)

+ 2k(sp — So)2 = 44.7J (33 ft Ib).

For the purposes of numerical integration the two
equations of motion are solved for X and § in the form

% = [(1/2)KrF2 —~ K3F1)/[(M + K))K; — (1/4)K3)]
and

§=[(1/2)K2F, — (M + K)F>]/[(M + K1)K;
- (1/4)K3),
where
Fi=(1/2)K 132+ K1 s%5 + (1/2)(K2s — K3x)$2 + Vi
and
F2 = (1/2)(K2x - K'ls)-"‘2 + K3xx~§
+ (1/2)K355‘2 + Vi + Vi,

A simple Newtonian integration proved to have adequate
accuracy for the calculation. The initial conditions were
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Fig. 6. Temporal profiles of the arrow velocity, force, and the string ten-
sion.

taken to be
x(0) =0, x(0)=0,
s(0) =sp, $(0)=0.

Temporal profiles of some of the more interesting pa-
rameters are shown in Figs. 6 and 7. Instantaneous values
of a number of parameters are listed in Table II. A com-
parison of the inelastic calculations of Sec. IV and the
elastic calculations of the present section can be made by
utilizing Table IT1, where the parameters for both cases are
tabulated.

Table Il. Numerical integration results for the elastic string.

Physical characteristics of the arrow, string, and bow
M =25 g (385 grain), D = 70 cm (28 in.)
ms = 7 g (108 grain), so = 85 cm (33.5in.)
k=620 N/m (3.51b/in.)
my = 93 g (1440 grain), / = 48 cm (18.9 in.)
k = 7000 N/m (40 Ib/in.)
B=0.271, 00 =0.5236 (30°), L = 43.4 cm (17.1 in)
Brace height parameters
Pg =260 N (58 1b), sp = 86.9 cm (34.2 in.)
2 (s —80) =3.72cm (1.46in.)
05 = 0.4401 (25.2°), D — xg = 20.4 cm (8.0 in.)
Full draw parameters
Pr = 205N (46 Ib), sr = 86.5 cm (34 in.)
2(sF — s0) =2.94cm (1.16 in.)
Fp= 175N (391b), 8 = 0.7608 (43.6°), ¢r = 0.4409 (25.3°)
Er=44.71J (33 ftlb)
Arrow exit parameters
tq = 16.1 msec, x4 = 51.5¢m (20.3 in.), x4 — xg = 1.94 cm (0.76
in.)
%4 = 52.8m/sec (173 ft/sec),s4 = 87.6cm (34.5in.) 2(s4 — 50) = 5.3
c¢m (2.1 in.)
$a4 = 5.5 m/sec (18 ft/sec), 0,4 = 0.4006 (23.0°)
04 =—1.92X 1073 (=3.4 X 10~5 deg)
£4=0781,V, = =4.0) (-3.0ftlb), ¥V, = 4.9 J (3.6 ftlb)
P4=369 N (831b), Ry = =54 N (—121b), P, = 2.1 kgm/s
04 =-29.1/sec, b4 = 3025/sec?, ¢4 = —45.6/sec, pq = —771/sec?
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Fig. 7. Temporal profiles of the virtual masses.

The partition of energy among the arrow, bow limbs, and
string can be determined from the results of the present
section. The kinetic energies of the arrow, string, and limbs
are, respectively,

Ty = (1/2)Mx2,

Ts = (1/2)mg{x? + sx@ cosg + x5 sing
+ (1/3)[s20? + $2]3,

Ty, = my 1762,

Table III.  Comparison of inelastic and elastic parameters.

Inelastic Elastic
Parameter string string
£4 i 0.9150 0.7810
04 -5.89 X103 -1.925 X 1073
04 0.5237 0.4006
X4 56.0 m/sec 52.8 m/sec
P, 653N 369N
X4 1.645 kgm/sec 2.10 kgm/sec
R, —542 N —54N
Er 4291 447
Fratic 178 N 175N
O 0.7934 0.7608
©F 0.4346 0.4409
M5p/FF 0.6482 0.9342
Pe/PF 0.717 1.0002

2 The footnoted results are obtained from the dynamic expressions for the
force on the arrow My and the string tension Pr at arrow release ratioed
to the static expressions for the full draw force and string tension, re-
spectively. These ratios are

Al)'c'lr/l’-'sf.!at = M/(M + KF)

and

1 1
Pp/PF = (M + 7ms + § Ms%0 PxF COS¢’F)/(M + Kr)

for the inelastic string, and

. 1
M5Ep[FF = —M (5 Kor(Visr + Vigr) — K3FVLxF)/

1
[(M + K1r) Ksr — ZK%F] Vixr

and Pg/P$* = 1 for the elastic string.
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Evaluating these expressions at arrow exit, we find the
following results for the kinetic and potential energies. All
quantities used in the evaluation are presented in Table II.
The energies are written as percentages of Eg: Ty = 78.1%,
Ts=98%, Ty = 11.0%, VL = —9.0%, V; = 10.9%. These
percentages total 100.8% as a consequence of accumulative
errors in the numerical integration. Note that the limb
potential energy is negative and that the total potential
energy in the bow limbs and string system is only 1.9% at
arrow exit.

Let us consider small vibrations for the elastic string case.
We will find two fundamental frequencies corresponding
to the two degrees of freedom, x and s, for the elastic string
case, contrary to the single frequency

wo = 3k/m;

obtained for the inelastic string. We recall that for the latter
case we found fo = 82 Hz when the nonlinear terms in the
equation of motion were neglected and f = 65.5 Hz when
those terms were taken into account. For the elastic string
we will consider only the linearized equations of motion.
This results in the following two equations of motion:

%+ (1/2)scotfy + wi(x —xp) — w(s — s5) cotfy =0,

6m. 8

%J’écotﬂo + (1 + ) §csc20y — wi(x — xg)cotby

my
+ w} ok cot?f + 22 (sinflo — 0o cosbo)
K 1 00 sm200

Substitutions of an e’ time dependence gives the usual
secular determinant for w with the following roots:

w=0.670we and 1.066 wq.
The two frequencies for the elastic string case are then
f=55Hz and 87 Hz.

(S —SB) = 0.

VI. AIR RESISTANCE AND HYSTERESIS
ENERGY LOSSES

The analyses of the dynamics of the bow and arrow in
Secs. IV and V ignored any possible effects of air resistance
or hysteresis losses. Estimates of air resistance effects have
been made, as briefly summarized in Appendix B, and in-
dicate the total energy dissipated by the limbs, string, and
arrow to be 1.4%, or less than 2% of the total energy stored
at full draw. This is small compared with either the 9% or
22% values of energy not available for kinetic energy of the
arrow as predicted by the inextensible and elastic string
models, respectively.

No hysteresis data exists that is of sufficient quality to
clearly eliminate this effect as an energy-loss mechanism.
However, the absence of data itself lends credence to its
unimportance (it is difficult to make 1% force-draw curve
measurements to determine the static hysteresis and the
dynamical measurement would be more difficult yet).
Crude results indicate the static hysteresis losses are less
than 3% for contemporary bows of quality design.

VII. CONCLUSION

A comparison of the efficiency calculated by the inelas-
tic model with the efficiency predicted by the elastic model
shows a significant difference. The weight of experimental
evidence, which has not been exposed in this paper, favors
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the elastic model. A few efficiency measurements are re-
ported? in Archery: The Technical Side. If a mental inte-
gration of the results presented there is performed, the
implications are that the half-round cross-sectional area
long bows tested by Hickman, circa 1930, had efficiencies
on the order of 60%. The rectangular cross-section bows
tested by Klopsteg in the next decade fell into a 70% effi-
ciency category. In the popular literature of the next two
decades efficiency measurements were occasionally re-
ported and fall in the 60-85% efficiency range. A few effi-
ciency values over 90% were reported, but rarely, and never
with sufficient explanation of the measurement technique
to verify the reported value, nor assess the experimental
errors. Measurements of efficiency made by the author,
circa 1960, on some of the more popular bows of the time
can be summarized as 80%. The totality of these unpub-
lished efficiency measurements is in substantial agreement
with the elastic string model and does not support the in-
elastic string model predictions. The latter models usually
rely on air résistance and hysteresis losses to explain away
the discrepancy between the theoretical predictions and
experimental measurements; but as has been shown quan-
titatively, air resistance can account for only less than 2%
energy loss and hysteresis for less than 3%. Dissipation is
therefore a highly improbable explanation of the discrep-
ancy.

In Hickman’s first published article! he made measure-
ments to obtain the time dependence of the arrow position,
velocity, and acceleration. Except for the zero.value of ac-
celeration obtained by Hickman at arrow release (which
was probably a consequence of his measurement technique
and graphical differentiation to obtain velocity and accel-
eration), these acceleration profiles show the same undu-
lations as result from the elastic string model for the ac-
celeration temporal profiles. No comparison of the data
with experiment can be made in detail, however, since not
enough of the physical characteristic parameters required
by the prediction model are available. Moreover, the inex-
tensible string models show similar variations in the ac-
celeration profiles. However, the elastic string model ap-
pears to be of adequate accuracy to justify remeasurements
of temporal profiles of arrow position, velocity, and accel-
eration of contemporary bows.

The string tension at arrow exit as predicted by the elastic
model is roughly half of the value predicted by the inelastic
model. Unfortunately, no experimental data exists for string
tension at arrow exit. However, Nagler? reports that for
long life the breaking strength of the string should be four
times the full draw force. Let us assume this rule of thumb.
Then a safety factor can be defined as 4Fg/P 4 for long life
of the string. Using this prescription, the safety factors
derived from the elastic and inelastic models, respectively,
are 1.9 elastic and 1.1 inelastic. A safety factor of 1.1 seems
very marginal. As a second point of substantiation of the
elastic model, Taylor3 indicates that he has found (without
expounding on how) that the dynamic string tension at
arrow exit is generally a factor of 2 greater than the static
force at full draw. This factor is 2.1 for the elastic model and
3.7 for the inelastic model, again favoring the elastic
model.

The static force required to hold the bow at full draw and
the dynamic force on the arrow just after arrow release are
not the same for either the elastic or inelastic models. The
ratios of these two quantities are given in Table III for both
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models and there is nearly a 45% difference between them.
The fundamental difference between the two models is that,
for the elastic model, the static string tension at full draw
is 2k (sr — s¢) and the dynamic string tension at arrow re-
lease must also be 2k(sF — s¢), since §F = 0. For the in-
elastic model the string tension is unrelated to the length
of the string and becomes whatever value is needed in the
force balance required by the system.

The analysis presented in this paper assumed infinite
string signal velocities for motion both along the string and
perpendicular to-the string. The longitudinal signal velocity
is

C| = \/4ks/m; = 1700 m/sec,

so that the time required for a signal to transit the string
halflength is 1| = s¢/C) = 0.5 msec. The transverse signal
velocity is

C1 = V/2Psg/ms = 220 m/sec

for string tension on the order of 200 N. The time required
for a transverse signal to transit the string halflength is then
t; =s0/C1 = 3.9 msec. Both of these times are greater
than the step sizes used in the numerical integration and the
transverse signal transit time is a significant fractior of the
16 msec required for the arrow to exit the bow. Conse-
quently, the approximation used for the dynamics of the
string should be reconsidered. This, unfortunately, would
add considerable complexity to the model.

The model used for the estimate of air resistance on the
motion of the string and bow limbs is admittedly crude and
a more accurate approach is warranted. However, this will
probably only be stimulated by more accurate experimental
data. An interesting and not difficult experiment could be
performed that might considerably enhance our under-
standing of the effects of dissipation within the string and
bow limb system. This would be the measurement of the
frequency and amplitude content of a plucked bow string.
There is a significant difference between the predicted vi-
brational frequencies of the elastic and inelastic models and
this might be used to determine their range of validity.

Aside from the obvious use of the elastic string model to
carry out parametric studies such as determining the vari-
ation of efficiency with string mass, arrow mass, and limb
mass or the variation of arrow velocity with brace height,
bow limb length, riser length, etc., it might prove interesting
to extend the model to include the effect of asymmetry
about the x axis. When the bow and string system is no
longer symmetric about the arrow, the system might gen-
erate an angular momentum, causing the bow to rotate
about an axis normal to the plane of the bow limbs and
string. Indeed, the modern archer has attached stabilizers
of high moment of inertia to the nonworking portions of his
bow to counteract torques he experiences in loosing his
arrow.

The above comments indicate that the most useful future
activity for advancing our understanding of bow and arrow
dynamics would be the collection of accurate data for the
dynamic arrow, string, and bow limb system with which the
elastic string model can be compared.
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APPENDIX A: ARCHERY IN THE
CLASSROOM AND LABORATORY

Many elements of archery may be used to exemplify .

physical principles in the classroom and laboratory. The
bow and arrow have a universal familiarity that can be
exploited in the classroom to hold student interest while he
or she is absorbing such fundamental concepts as force,
work, or potential energy. Many students will have had the
opportunity to have drawn a bow and experience the force
and work required to do so. Even those who may not would
have little trouble in capturing the essence of a force-draw
curve as related to a bow.

It is not a difficult transition from the force-draw curves
such as those shown in Fig. 8 to the concept of potential
energy and its equivalence to the work done in drawing the
bow and to the energy stored under the force-draw curve.
The construction of such a curve as a classroom demon-
stration can be accomplished inexpensively with a simple
spring scale and meter stick. The force-draw curve con-
struction requires little time and provides a graphic illus-
tration of the principles involved. The energy stored under
the curve is easily estimated and, certainly, the transfer of
this stored energy to kinetic energy of the arrow is easy for
the student to comprehend.

For the instructor or student with some archery ability
the bow and arrow can be used in conjunction with the
ballistic pendulum to measure the arrow velocity and con-
sequently its kinetic energy. Coupling this result with the
energy stored under the force-draw curve leads to the de-
termination of the efficiency of the bow and arrow system.
The ballistic pendulum measurment is difficult because of
the angular momentum that can be imparted to the pen-
dulum by off-center hits and because of the arrow’s free
vibration with amplitudes typically on the order of 2-3 cm.
Adjustment of the distance from the point of arrow release
to the pendulum on the order of a few arrow lengths will
usually result in the determination of a distance at which
the arrow strikes the pendulum parallel to its swing axis.

In introductory mechanics, one can ignore the mass of
the string and bow limbs, neglect the elasticity of the string,
and assume the force-draw curve to be linear. The bow and
arrow dynamics then becomes very simple indeed. The
energy equation is (1/2)Mx2 + (1/2)kx? = E, where M
is the arrow mass and the other parameters have their usual
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Fig. 8. Force-draw cruves for contemporary recurve and compound bows.
The shaded area under the recurve force-draw curve labeled V is the po-
tential energy for the draw position x. The total area under the force-draw
curve is the total energy E stored in the bow at full draw.
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meaning. The static draw force is F = kx and the equation
of motion Mx = —kx. The construction and understanding
of these elementary equations of dynamics are easy for the
student to grasp when the model is as simple and familiar
as the bow and arrow. Moreover, the solution of these
equations allows the introduction of the subleties of tran-
sient phenomena, a refreshing digression from the usual
harmonic oscillator solution of these equations. The solution
predicts reasonable values for the time for the arrow to
transit the bow and for the final arrow velocity. A first ap-
proximation to reality is achieved with the recognition that
the string does indeed have mass and must be moving at the
time of arrow exit. A simple calculation shows that effec-
tively 1/3 of the string mass moves with same velocity as
the arrow at arrow exit, resulting in less than unity effi-
ciency.

In intermediate mechanics one can give up massless
strings and bow limbs to arrive at the inelastic string model.
Without the complications of an elastic string, it is a fairly
simple task to derive the energy equation for the bow and
arrow system. This would give the student some practical
experience with the dynamics of a variable mass system
outside the realm of relativistic mechanics or the classical
rocket problem. The depth to which the inelastic string
dynamics is probed can vary from just the derivation of the
energy equation and its use to determine approximately the
final arrow velocity and bow and arrow system efficiency
to the full expressions of the complete solution in closed
form. The following exercise illustrates one manner in which
the bow and arrow dynamics can be used. Assuming an
inelastic string, linear force-draw curve, and a linear virtual
mass-draw relation, what is the time for the arrow to reach
the brace height position after arrow release? Under these
assumptions the potential energy and virtual mass become
V= (1/2)k(xg - .X)2 and K = Kp - (KF - KB)x/xB, re-
spectively. The energy equation (1/2)(M + K)x2 4+ V
= Er can then be integrated to give

tn = 2XB (M + Kp)!
B x5 M+ K;

where E(a,¢) is the elliptic integral of the second kind and
sin2a = 2(Kr — Kg)/(M + Kp). Other sample problems
suited to the intermediate student level are What is the ef-
ficiency at brace height? and Compare the static force at
full draw and the dynamic force on the arrow at the instant
of release.

There are also opportunities for the intermediate student
laboratory. The derivation of the small vibrations of a
braced bow is a very simple matter when the equations are
linearized for small vibrations. Similarly it should not be
difficult or expensive to measure the predicted small dis-
placement frequency in a normally equipped student lab-
oratory (e.g., a small magnet taped to the string center, a
loop of wire as a pickup coil, and an oscilloscope). Both
nonlinearities and air resistances are important to the
characterization of the free vibrations of a bow, in contrast
to the case of the dynamics during arrow transit of the bow.
The vibratory motion is damped in about 1 sec as the energy
is dissipated to the air and possibly internally in the bow
limbs. It is not difficult to predict damping times of this
magnitude as due to air resistance, but it does require a
familiarity with viscous aerodynamics outside of the simple
Stoke’s regime.

Finally, the full complexity of the elastic string problem

/2
E(a,7/4),

W. Marlow 331



could be introduced in a summary fashion in advanced
mechanics classes. Just as in the ease of the introduction of
forces, potentials, etc., for the beginning student, the bow
and arrow system provides an interesting and easily un-
derstood framework for the introduction of the concept of
Lagrangian densities. Moreover, the elastic string problem
provides a practical example of a fairly simple derivation
of a set of Euler-Lagrange equations in two degrees of
freedom and an energy equation for a complex problem with
variable mass that is readily interpretable in terms of fa-
miliar quantities. There is no known closed-form solution
of these equations, but at this stage in a student’s career he
or she should be able to accept a numerical solution and
understand the conclusions drawn from those results rela-
tive to the differences between the elastic and inelastic string
models without a feeling of intimidation.

The transformation from the Euler-Lagrange equations
of motion to the force diagrams for the bow and arrow
system as shown in Figs. 4 and 5 of Sec. I11 is probably too
tedious and lengthy for a classroom discussion. There is
here, however, the genesis of a technique for teaching
physics students the elements of complex force and torque
systems. The method of generation of the Euler-Lagrange
equations of motions of a complex system is a fairly
straightforward problem for the advanced student, but the
transcription of these equations to an understanding of the
elementary forces and torques operating in a dynamic
system and the possibility of treating these dynamic prop-
erties in much the same manner as static force and torque
diagrams is foreign to the physic student. The approach
used in this paper on bow and arrow dynamics using the
Euler-Lagrange equations as the starting point seems to
be a method that would be easily accepted by students with
a typical physics curriculum background. In passing, it is
noted that the bow and arrow dynamics affords one of the
few practical examples where a Coriolis force exerts itself
in a simple mechanical system. Typically, however, this
Coriolis force is small relative to the other forces involved
in the problem.

In summary, bow and arrow dynamics provides the in-
troductory, intermediate, or advanced mechanics instructor
with an interesting and familiar subject that can be utilized
to introduce concepts often difficult for the student to ab-
sorb without such a concrete example.

APPENDIX B: AIR RESISTANCE EFFECTS

The effects of air resistance on the motion of the arrow,
string, and bow limbs while the arrow transits the bow are
considered in this appendix. Unfortunately, from a time just
shortly after arrow release until the vibratory motion of the
string is nearly complete, the velocities of the arrow, string,
and limbs are too.large to allow the simplifying approach
of the Stokes approximation, i.e., a linear relationship be-
tween the retarding air resistance force and the velocity of
motion.

Consider first the effect of air resistance on the arrow
motion. Rheingans,? in a paper addressing the flight of an
arrow subsequent to exit from the bow, developed the fol-
lowing empirical relation for the arrow drag force,

R4=K3x2,
where
K= K]de + K2Dd + K3Ap.
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The parameter B provides an adjustment for the shape of
the arrow head on tip, d is the diameter of the arrow, D the
arrow length, and Ar the total area of the fletching. Fitting
this expression to experimental data, Rheingans found

Ky =9.6 X 1072 Nsec?/m* (1.3 X 107¢ Ibsec?/in.2 ft2),
K> = 2.6 X 1073 Nsec?/m* (3.5 X 108 Ibsec?/in.2 ft2),
K3 = 5.7 X 1073 Nsec?/m* (7.7 X 10~% Ibsec?/in.2 ft2);
B =1.0 forogival tips,
2.3 for parallel tips,
7.0 for blunt tips.

A reasonable approximation for the arrow velocity (in lieu
of a numerical integration of the equation of motion) is
given by, X = X 4(2x 4x — x2)1/2/x 4. Then the energy loss
due to air resistance as the arrow transits the bow is

AEA = j;XA RA dz = %K)'C%XA,

and the percentage of the total energy is
AEA/EF = 0.1%.

These calculations assumed an arrow with B = 1, d = 0.79
cm (20/64in.), D = 70 cm (28 in.), and Ar = 58 cm? (9.0
in.2).

Determination of the energy loss for the string and limbs
is somewhat more involved. The string loss will be approx-
imated by

AE, = pCp d; j; * dt

xs(x4)
dx; x..?’
x5(0)

where p is the air mass density, Cp, the drag coefficient, d
the string diameter, d£ an elemental length of the string,
and dx; an infinitesimal displacement of the latter string
element parallel to the x axis. Motion of the string in the
y direction is neglected. Using previously given relations
for x5 and X, then

50 XA
AE, = pCp d, j; ds J; dx52(1 + Eoy cose)>.

Approximating the expression in the brackets as a linear
function of x between its end point values of 0.36 at x =0
and 0.25 at x = x4, then

AE, = 0.190Cp dssox%x 4
and
AEJEr = 1.2%,

for values of the parameters as follows: p = 1.29 X 1073
g/cm3, Cp, = 1.0,12d; = 0.2 cm, 5o = 85 cm, X4 = 52
m/sec, and x4 = 0.46 m.

The energy loss of the limbs is approximated by

{ r(xq)
AEL=PCDLJ; dqw f( * dr,‘-Z’

0)

where the notation follows that used previously. With w
= wo + w; — wg/l and r = g0, this becomes

1 1wy x4 .5
- -4 10,)3.
AE; 4 pCpriwg (1 + 5 0) j;_ dxx? (10,)
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Assuming the function /6, to be proportional to x, then
1 Wi .2
AEL = 0.00ISPCDLIWO 1+-— X4X 4
5 W,

and for Cpz = 16,13/ =048 m,wo=1cm,andw; = 1.2
cm, then

AE;/Ep = 0.1%.

The total energy dissipated by the limbs, string, and
arrow is therefore 1.4% or less than 2% of the total system
energy.
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