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Abstract

The storage of deformation energy in a bow with or without recurve is considered.
Some numerical examples are discussed. For a simple bow it is shown that theoreti-
cally a shooting efficiency of hundred percent is possible.

1 Introduction

The bow and arrow have been invented by mankind already in prehistoric times. During
many millineries it was its most effective long range weapon and hunting device. Nowadays
it is used in archery, a sport practiced by many people all over the world.

A bow can store energy as deformation energy in its elastic arms or limbs. Its special
feature is that this energy, delivered by the relatively slow human body, can be quickly
released to a light arrow in a very effective way. Probably essential for the effectiveness of
the transformation of the deformation energy into kinetic energy of the arrow is the string,
as light and inextensible as possible, which couples bow and arrow.

The main object of this paper is to discuss the statics of the bow. It will be represented
by an infinitely thin elastic line endowed with bending stiffness, which is a function of a
length parameter along this line. In the unbraced situation, which is the situation of the
bow without string, the elastic line can be curved in the ”opposite” direction. It turns
out that this curvature called recurve is important with respect to the way in which the
deformation energy can be stored. When drawing a bow, in general the force exerted by
the archer on the string, will increase. So in order to keep a bow in fully drawn position,
the maximum force, called the weight of the bow must be exerted by the archer while he
aims at the target. Hence one of the objectives for more relaxed shooting is that this force
is not too large while still a sufficient amount of deformation energy is stored in the bow. A
properly chosen recurve is one of the possibilities to achieve this. It will be shown that by
such a recurve it even is possible that the drawing force can decrease in the neighbourhood
of maximum draw. Such a phenomenon is well known in the nonlinear theory of elasticity.

We will not discuss here the ”compound” bow, invented about fifty years ago by a
physicist named Claude Lapp [2]. This bow uses, in order to cause the just mentioned
effect of the decreasing drawing force, pulley’s with eccentric bearings at the end of the
elastic limbs.

Much research has been carried out already on the bow and arrow. For a general
background we refer to the article of Klopsteg [6], where many aspects of bow and arrow
are thoroughly discussed from a physical point of view. Other papers are for instance [5]
and [8] where by making simplifying assumptions, calculations of the stored energy have
been carried out. In this paper we use the theory of elastica with large deformations as
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discussed for instance by Frisch-Fay [4]. Because nowadays computers are available the
non linear deformation of our model can be calculated without further simplification It
turns out that it can happen, al be it for not too realistic bows, that there is more than
one solution to the problem.

In calculating properties of bows it is the intention to obtain an insight in what makes
a bow a good bow, in this paper from the static point of view only. Besides by a number
of parameters, length of the bow, ultimate drawing force and some others, the static
behaviour of a bow is determined by two functions namely its shape without string, and
its distribution of bending stiffness. These functions have to be chosen in one way or
another. This means that there is a large measure of freedom which is not so easy to
catalogue. It is not the aim of this paper to give a full account of possibilities however in
the section on numerical results some trends are shown. In a following paper we hope to
return to this subject in a more exhaustive way. We remark that when the dynamics of a
bow is considered even a third function, the mass distribution, comes into play.

We have also applied our theory to two ancient bows. One is an Asiatic bow of the 14th

century and is described in [7]. The other one is much older and is possibly constructed
±3500 years ago [3].

It must be remarked that in general it is not possible that all the deformation energy
stored statically in the bow can be transferred, during the dynamic process of shooting,
as kinetic energy to the arrow. This depends on the way in which the kinetic energy of
the arms or limbs can be recovered. It is shown in the Appendix 5, for a simple model of
a bow, when the mass of the string can be neglected and when it is inextensible, that all
the deformation energy stored in this bow can be transformed into kinetic energy of the
arrow. Hence, no kinetic energy is left behind in the arms.

2 Formulation of the problem

We will consider bows which are symmetric or nearly symmetric with respect to some line,
in the latter case we treat them approximately as being symmetric. The bow is placed in
a Cartesian coordinate system (x, y), the line of symmetry coincides with the x axis. Its
midpoint coincides with the origin O. The upper half is drawn in Figure 1. We assume the
bow to be inextensible and of total length 2L. In our theory it will be represented by an
elastic line of zero thickness, along which we have a length coordinate s, measured from O
hence 0 ≤ s ≤ L. This elastic line is endowed with bending stiffness W (s).

In Figure 1.a the unbraced situation (without string) is drawn. The geometry of the
bow is described by the local angle θ0(s) between the elastic line and the y axis, where
θ0(s) is a given function of s. Because the bow possesses recurve it is predominantly curved
to the left.

In Figure 1.b the bow is braced by applying a string of total length 2l(l < L), which
also is assumed to be inextensible. In the braced position no force in the x direction is
exerted on the string which intersects the x axis under an angle of 90◦. It is possible for
a bow with recurve as is drawn in Figure 1 that a value s = sw < L exists such that for
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Figure 1: Three situations of the working-recurve bow: a) unbraced, b) braced, c) partly drawn.

values of s with sw ≤ s ≤ L the string lies along the bow. We assume that in that case
there is no friction between bow and string. The string at s = sw has to be tangent to the
bow of which the curvature for sw ≤ s ≤ L is the same as the curvature in the unbraced
situation. However, it is also possible that for a bow with less or without recurve, the
string starts from the tip, then sw = L and the string can make a non zero angle with
the tangent to the bow at the tip (Figure 4). Instead of the length of the string the brace
height or ”fistmele” |OH| can be used as a basic quantity of the braced position.

In Figure 1.c the bow is pulled by force F (b) into a partly drawn position where the
middle of the string has the x-coordinate b. Also in this situation the string can still lie
partly along the bow for values of s with sw(b) ≤ s ≤ L and the same considerations hold
as were given for the region of contact in the braced situation. To each bow belongs a
value b = |OD| for which it is called fully drawn. The force F (|OD|) is called the ”weight”
of the bow and the distance |OD| is its ”draw”.

In our theory we have to consider only the upper half of the bow, clamped at O. The
Bernoulli-Euler equation, which we assume to be valid for the elastic line, reads

M(s) = W (s)
(dθ

ds
− dθ0

ds

)
, 0 ≤ s ≤ L . (1)

Besides (1x) we have two geometric equations

dy

ds
= cos θ ,

dx

ds
= sin θ , 0 ≤ s ≤ L . (2)

The moment M(s) is caused by the tension force K(b) in the string, we find

M(s) = K(b)h(s) = K(b)
(
b cos α − x(s) cos α − y(s) sin α

)
, 0 ≤ s ≤ sw , (3)

where h(s) (Figure 1.c) is the length of the perpendicular from the point (x, y) to the string
and α(b) is the angle between the string and the y axis, reckoned positive in the indicated
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direction. There are three boundary conditions at s = 0, namely

θ(0) = θ0(0) , x(0) = y(0) = 0 . (4)

Besides we have a geometrical condition with respect to the length of the string. In our
model the thickness of the elastic line is assumed to be zero hence the length of the parts
of bow and string which are in contact with each other are equal and we find

(
b − x(sw)

)2
+

(
y(sw)

)2
=

(
l − (L − sw)

)2
. (5)

When b is prescribed the equations (1), (2) and (3) together with the conditions (4) and
(5) are sufficient to determine the situation of the bow hence also the unknown functions
θ(s), x(s), y(s) and M(s) and the unknown constants sw(b), K(b) and α(b).

It is clear that

M(s) = 0 , sw ≤ s ≤ L , (6)

hence it follows from (1) that for the region of contact of string and bow, the bow has kept
its curvature of the unbraced situation as has been mentioned previously. Thus

θ(s) = θ0(s) +
(
θ(sw − θ0(sw)

)
, sw ≤ s ≤ L . (7)

We want to calculate the force F (b) (Figure 1.c) from which follows the energy A
stored in the bow when it is brought from the braced position b = |OH| into the fully
drawn position b = |OD|. We have

A =

∫ |OD|

|OH|
F (b) db . (8)

This amount of energy must be equal to the difference between the deformation energy of
the bow in the fully drawn position and the deformation energy in the braced position.
Hence we have another representation of A

A =
[∫ L

0

W (s)
(
θ′(s − θ0s)

)2
ds

]b=|OD|
b=|OH| , (9)

which can be used to check the computations.
We now introduce dimensionless quantities by

(x, y, s, L, l) = (x, y, s, L, l) |OD| , M = M |OD|F (|OD|) , K = K F (|OD|) ,

W = W |OD|2F (|OD|) , A = A |OD|F (|OD|) . (10)

In (10) we have used the still unknown force F (|OD|) to obtain dimensionless quantities,
however, this sometimes makes it more simple to compare numerical results for several
types of bows.
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Also we introduce the angle

ϕ = θ − θ0 , (11)

then after combining (1) and (3) the relevant equations become

W
dϕ

ds
= K

(
(b − x)cosα − ysinα

)
, 0 ≤ s ≤ sw , (12)

ϕ(s) = ϕ(sw) , sw ≤ s ≤ L , (13)

dx

ds
= sin(ϕ + θ0) ,

dy

ds
= cos(ϕ + θ0) , 0 ≤ s ≤ L , (14)

(
b − x(sw)

)2
+

(
y(sw)

)2
=

(
l − L + sw

)2
, (15)

ϕ(0) = x(0) = y(0) = 0 . (16)

In the next section a method to solve these equations is discussed.

3 Numerical solution of the equation of equilibrium

In this section we consider some aspects of the numerical method used to solve the equations
(12)· · · (16). We take for b a fixed value

|OH|
|OD| ≤ b ≤ 1 . (17)

When b passes through this range the bow changes from its braced position to its fully
drawn position. First we assume the bow to be partly or fully drawn hence not to be in
the braced position. The length 2l of the string is prescribed.

The unknown force K exerted on the bow by the string passes through the point (b, 0)
and makes an unknown angle α with the y-axis. We make some choice K̃ and α̃ for the
values of K and α, and solve the equations (12) and (14) starting at s = 0 where we satisfy
the initial conditions (16). We assume the functions W (s) and θ0(s) to be continuous and
W (s) ≥ ε > 0. Then it is not difficult to show that the solution exists and is unique. A
Runge-Kutta method is used to obtain this solution.

There are two possibilities which can occur. First, when continuing the solution of (12)
and (14) for a suitable choice of K̃ and α̃, we reach a point A with a value of s = s̃w < L
for which

ϕ(s̃w) = −α̃ − θ0(s̃w) , (18)

in words, a value of s for which the tangent at the bow is parallel with the chosen direction
α̃ of the force K̃. After this the undeformed part AT (Figure 2), is added to complete the
”bow” hence

ϕ(s) = −α̃ − θ0(s̃w) , s̃w ≤ s ≤ L . (19)
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Figure 2: The bow deflected by a force K̃, mak-
ing an angle α̃ with the y axis, at the arm AB.

Second, there is no s̃w < L that satisfies (18), the solution is continued until s = L, then
the point A coincides with the tip T of the bow.

So, we have found a deflected position OAT of the bow which in fact is caused by
connecting to the bow, at s = s̃w in the first case or at s = L in the second one, a rigid
bar AB perpendicular to the direction α̃, at the end of which acts the force K̃. This is
illustrated in Figure 2 for the first case.

The force K̃ and the angle α̃ have to be determined such that |A − B| = 0 and the
”distance” between the point (b, 0) and the tip T , measured from A to T along the bow
equals l. These two conditions are written as

f1(K̃, α̃)
def
=

(
x(s̃w) − b

)
cos α̃ + y(s̃w) sin(α̃) = 0 , (20)

and

f2(K̃, α̃)
def
= y(s̃w) − (l − L + s̃w) cos α̃ = 0 , (21)

respectively. The problem is now to solve numerically these two non-linear equations with
respect to K̃ and α̃.

For the solution of (20) and (21) a Newtonian method is chosen. Starting points in the
α, K plane for this method have to be close enough to a zero point of both f1 and f2 to
ensure convergence. To obtain starting points we could compute the values of f1 and f2 in
all nodal points of a grid placed over a suitable chosen region G of the (α, K) plane, where
the zero’s are expected. This, however, would be rather time consuming.

Another method is developed, in which we move step by step for instance along the line
f2(α, K) = 0. After each step we check for a change of sign of f1(α, K). Such a change of
sign gives an approximation of a zero of both f1 and f2. This procedure has been realized
as follows.
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Figure 3: Determination of the
zero’s of f1 = 0 and f2 = 0.

For a given value b we take α ”too small” for instance α = 0 and using a properly
chosen step size we increase K, starting at K = 0 and keep a = 0. Hence we move along
the boundary of the region G, which is a rectangle as drawn in Figure 3. Calculating the
values of f2 along this boundary a zero of f2 can be located approximately by its change
of sign in between two succeeding grid points. In Figure 3 this point is in between P
and Q. By linear interpolation a better approximation (α1 = 0, K1) for the zero of f2 is
found and f1(α1, K1) is calculated. Now the values of f2 at R and S are calculated. When
there is a change of sign between Q and R, R and S or S and P we know through which
side the line f2=0 leaves the rectangle PQRS. A linear interpolation again gives a better
approximation (α2, K2) for a zero of f2 and f1(α2, K2) is calculated. When f1(α1, K1) and
f1(α2, K2) have different signs these points are chosen as starting points for the Newtonian
method. When there is no change in sign of f1 we have to start with the adjacent rectangle,
of which one side contains the last found approximation for a zero of f2. This procedure
is repeated until we reach the boundary of region G again.

It is assumed that the functions f1 and f2 behave sufficiently smooth with respect to
the size of the grid placed at the region G. This causes no trouble in practice.

In this way possibly a number of zero’s of the equations (20) and (21) can be found.
Each of these correspond to an equilibrium situation of the bow, while the midpoint of the
string has the coordinates (b, 0). Not all of these equilibrium situations need to be stable.

We now discuss the braced position which corresponds to b = |OH||OD|−1 in (17).
This value of b called the brace height or fistmele, is a basic quantity for the adjustment
of a bow. We know that α = 0 hence we use only equation (20) in order to determine
the unknown force K. This is done by increasing K stepwise from zero and checking for
a change in sign of f1. By iteration K can be determined sufficiently accurate. Then
equation (21) gives us the half length l of the string.
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The braced position of the bow can also be determined by prescribing the half length
l of the string. Then equations (20) and (21) can be considered as equations for the two
unknowns b and K, again α = 0. A procedure analogous to the one prescribed in the first
part of this section can be used to satisfy both (20) and (21). Small changes however in
the length 2l of the string can cause rather large variations of the fistmele b. Because this
is in general the more important quantity, the first method to calculate the braced position
of the bow is recommended.

To check our program we have compared solutions obtained by it with solutions ob-
tained by other methods. We can take the bending stiffness W constant and the bow
straight in unbraced situation, θ0(s) ≡ 0. For given values of l and b our program yields
the values of K and α. Now we can use the theory of the largely deflected cantilever
described in [4] to compute the strain energy, due to bending caused by the force defined
by K and α. The elliptic integrals needed for this computation are obtained by linear
interpolation of values in the tables given in [1]. The results agreed very well and differed
only by an amount of 0.1%.

Another check has been made by using, in the case of a bow without recurve the finite
element program marc of the marc Analysis Research Corporation. Also these results
agreed with ours, a comparison of the drawing force F (b) showed discrepancies of only
0.5%.

4 Some numerical results

As we mentioned already, it is important for a bow to possess a sufficient amount of
deformation energy at full draw, kept in check by a not too large ultimate force or weight.
The measure in which the bow meets this demand can be described to a certain extent by
a dimensionless number q, called the static quality coefficient. Suppose we have an amount
of deformation energy A in the bow in the situation of full draw b = |OD| and the force is
F , then

q =
A

F (|OD|)|OD| = A , (22)

where the second equality follows from (10). The dimensionless deformation energy A
depends on a number of parameters and functions,

q = A(L, W (s), θ0(s), |OH| or l) , 0 ≤ s ≤ L . (23)

This number q is also a measure for the concavity of the function F = F (b). When we
compare two bows with the same value of |OD|, one with a larger q then the other, the
first bow is from the static point of view the best because it can store more deformation
energy ”per unit of weight”. Sometimes another definition of q is given by replacing |OD|
in (22) by |OH|. Then however when |OH| is changed the just mentioned property is no
longer valid. It is clear that q can not give a decisive answer to questions about shooting
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efficiency. In the case of a real bow the length’s |OH| and |OD| have to be measured from
a reasonably chosen elastic line representing the bow, to the midpoint of the string.

One of our objectives is to get insight into the dependency of q on the quantities denoted
in (23). To this end we start with the bow described in [5] and change in a more or less
systematic way its parameters and functions.

Some bows possess a nearly rigid central section of which the grip forms part of, its
length is denoted by 2L0. From the ends of this section start the elastic limbs each of
length L1 the half length of the bow is L = L0 + L1. For the grip, hence for 0 ≤ s ≤ L0,
we put W (s) = ∞.

The units we use are the cm (=0.3937 inch) and the kg force (=2.205 lbs). Because
in the literature characteristic lengths are often given in inches by ”simple” numbers, for
instance L0 = 4 inch, |OD| = 28 inch, these lengths expressed in cm sometimes suggest an
accuracy, which is not intended. The same holds for lbs and kg. In the following we do
not mention anymore the dimensions of a quantity, it is tacitly understood that a length
is expressed in cm, a force in kg, a bending stiffness in kg cm2, an energy in kg cm and an
angle in radians.

The bow (H bow) discussed in [5] by Hickman has the following characteristics

L = 91.4 , L0 = 10.2 , θ0(s) ≡ 0 , |OH| = 15.2 . (24)

The bending stiffness distribution for s > L0 is a linear function

W (s) = 1.30 105L − s

L
, L0 ≤ s ≤ L . (25)

For future reference we mention W (L0) = 1.15 105. For the draw of the bow we have
chosen |OD| = 71.1 which is slightly different from the value used in [5]. However when
we compare Hickman’s theory with this one, his results are corrected for this difference.

It follows from (25) that W (L) = 0. Because we use the Euler-Bernoulli equations this
is not a difficulty from the theoretical point of view, because the limit of the curvature
of the elastic line for s → L remains finite. However, in order to avoid computational
complications we put

W (s) = 7.69 , (26)

whenever in (25) the values of W (s) become smaller than 7.69. This interpretation has to
be given also to other bending stiffness distributions which occur later on.

A number of times we consider the consequences of a change of one or more character-
istic quantities of the H bow. This means that only these quantities are varied while the
other ones are the same as those given above. We remark that our results for the weight
of a bow F (|OD|) and for the deformation energy A, are linearly dependent on λ when
we replace W (s) by λW (s). Hence, it is easy to adjust the weight of a described bow to a
desired value by multiplying W (s) by a suitable λ. The quality factor q is independent of
λ.
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(a) (b)

Figure 4: (a) Some shapes of the dimensionless deformations of the H bow. (b) Dimensionless
force-draw curve of the H bow.

Table 1: Comparison between Hickman’s theory and this theory.

Hickman this theory

F (|OD|) 15.1 15.5

A 444 450
q 0.414 0.407

In Figure 4.a we have drawn a number of dimensionless deformations of this bow up to
its fully drawn position and in Figure 4.b its dimensionless force-draw curve both calculated
by this theory. When curves given by Hickman are made dimensionless there is an excellent
agreement with figure the numbers with dimension show some difference. Numerical results
theory and of this one are given in Table 1.

In Table 2 we show the influence of a change of the length of the grip L0 and the brace
height |OD| of a H bow. It is seen that the largest value of q occurs for the smallest grip
and smallest brace height and the smallest value of q for the largest grip and largest brace
height, however this difference is not very spectacular.

In Table 3 we give the influence of a change of the length L of a H bow. It follows that
the weight of the bow increases strongly when the bow becomes shorter while there is, as
in Table 2, only a weak influence on the quality factor q.

We next discuss the influence of a change of the bending stiffness on the H bow. We

10



Table 2: Influence of length of grip L0 and of brace height |OH| on the H bow.

L0 5.08 10.2 15.2

|OH| 12.7 15.2 17.8 12.7 15.2 17.8 12.7 15.2 17.8

F (|OD|) 13.9 14.0 14.1 15.4 15.5 15.7 17.3 17.4 17.6

A 417 408 398 460 450 439 510 500 488
q 0.423 0.411 0.397 0.420 0.407 0.393 0.415 0.403 0.389

Table 3: Influence of the length L on the H bow.

L 81.3 86.4 91.4 96.5 102

F (|OD|) 24.6 19.3 15.5 12.7 10.5
A 687 551 450 373 312
q 0.393 0.400 0.407 0.413 0.417

Table 4: Influence of the bending stiffness W (s) on the H bow.

W 1(s) W 2(s) W 3(s) W 4(s)

F (|OD|) 23.6 19.6 15.5 9.02
A 701 576 450 229
q 0.417 0.414 0.407 0.356
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Figure 5: The two types of recurve θ0,1(s) and
θ0,2(s) considered in Table 5.

choose

W n(s) = 1.15 105
( L − s

L − L0

)βn
, L0 ≤ s ≤ L, n = 1, 2, 3, 4 . (27)

with β1 = 0, β2 = 1/2, β3 = 1, β4 = 2. We refer with respect to W (L) = 0, to (26) and
the remark belonging to it. The bending stiffness W 3(s) is equal to W (s) from (25). With
increasing values of n the relative flexibility of the tip becomes larger. The results are
given in Table 4. We find that an increase of the stiffness of the tip causes some increase
of q, and that the bending stiffness distribution has only a modest favourable influence on
q for n changing from 3 to 1.

We now consider the influence of two recurve shapes denoted by θ0,1(s) and θ0,2(s) on
the H bow. The first one is very simple, θ0,1(s) = −0.12, the second one θ0,2(s), is given
by the unbraced shape of the bow in the (x, y) plane in Figure 5, where for reference also
θ0,1(s) is drawn. For each of these bows we have used W 2(s) as well as W 3(s) as bending
stiffness distribution. The results are given in Table 5. For reference we also give in this
table the straight bow θ0(s) = 0, which already is given in Table 4 under the headings
W 2(s) and W 3(s). It is seen that both recurves have statically a favourable influence on
the bow because the coefficient q is in both cases larger than q belonging to θ0(s) ≡ 0.
The recurve θ0,2(s) has the highest values of q. The best one of these q = 0.575 (which
is a rather large value) occurs for W 3(s) which has a more flexible tip than W 2(s). It is
remarkable that this is opposite to that of recurves θ0(s) and θ0,1(s) where the highest q
occurs for W 2(s).

Next we consider two bows B1 and B2 also with recurve of which the unbraced situation
however, differs from those of the bows we considered up to now. The bow B1 drawn in
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Table 5: Influence of recurve on the H bow for two bending stiffness distributions.

θ0(s) ≡ 0 θ0,1(s) θ0,2(s)

F (|OD|) 19.6 25.0 38.4
W 2(s) A 576 776 1510

q 0.414 0.437 0.554

F (|OD|) 15.5 20.1 29.2
W 3(s) A 450 607 1200

q 0.407 0.424 0.575

Table 6: Two recurve bows B1 and B2.

L L0 |OH| |OD| F (|OD|) A q
B1 84.2 28.4 17.4 62.5 13.6 362 0.426
B2 81.9 14.8 15.2 71.1 13.6 854 0.883

Figure 6.a is a normal modern recurve bow for target shooting.
The difference with bows considered before is that the elastic limb starts at the end

s = L0 of the rigid section in the direction of the archer. Its measured bending stiffness
distribution is given in Figure 6.b. The bow B2 has an excessive recurve (Figure 6.c). Its
bending stiffness varies linearly from the rigid section to the tip (Figure 6.d). In Table 6
we give the parameters of these bows and the calculated quantities F (|OD|), A and q.

It is remarkable that the static quality coefficient q of B2 is very high with respect to
all the bows we have considered. The reason is that the main part of its force draw curve
is strongly convex as can be seen from the dimensionless force draw curve of Figure 7,
where also the curves of bow B1 and of the bow B3 denoted by (θ0,2(s), s3(s)) in Table 5
are given. This shape of force draw curve (bow B2) resembles the force draw curve of the
compound bow mentioned in the introduction, here however no pulley’s are needed. In
Figure 8 we have drawn the dimensionless deformation curves of B1 and B2.

We emphasize that it is not clear that B2 will be a good bow for shooting because
our considerations are only based on statics. However, it seems worthwhile to investigate
the dynamic behaviour of this bow, which will depend also on the choice of the mass
distribution of the elastic limbs.

The following bow resembles an Asiatic bow ( [7, plate 18]). It has a rather strong
recurve. We have tried to guess a bending stiffness so that its calculated braced and fully
drawn position resemble the photographs given in [7]. Opposite to the bows discussed up
to now this bow has a rigid tip which is strengthened by a ridge. A difficulty is that this
bow does not show too clearly a line of symmetry, it even is said that the upper limb is the
shooting limb which ”accounts for most of the shooting”. In Figure 9 we give its chosen
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(a)

(b)

(c) (d)

Figure 6: (a), (b) a modern recurve bow B1, θ0(s) and W (s), (c), (d) a bow with strong recurve
B2, θ0(s) and W (s).

Figure 7: The dimensionless force draw curves
of B1, B2 and the bow B3 of Table 4 (θ0,2(s),
s3(s)).
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(a) (b)

Figure 8: (a) Dimensionless deformations of the B1 bow. (b) Dimensionless force-draw curve of
the B2 bow.

Table 7: Bending stiffness of the bow of Vrees.

s 0 15.2 27.5 35.8 44 64.5 69.8 83.8

W (s) 10−4 35.4 27.0 23.8 21.7 16.6 5.31 3.24 1.26

bending stiffness distribution. For 0 ≤ s ≤ L0 = 6.24 and for 46.8 = L2 ≤ s ≤ L = 63.5 we
take W = ∞. The brace height |OH| = 18.4 and the draw |OD| = 76.2. Figure 10 gives
the dimensionless deformation curves and force draw curve. From Figure 10.a we have also
an impression of its unbraced shape. Calculated quantities are F (|OD|) = 22.7, A = 586
and q = 0.339. Hence its static quality factor q is rather low.

We also consider a bow found in the neighbourhood of Vrees which is described by
Beckhoff [3]. The quantities measured or guessed, given in that paper are L = 83.8,
L0 = 0, |OH| = 17, |OD| = 70, θ0(s) = 0 and W (s) is given in Table 7. The weight and
deformation energy calculated in [3] and by this theory are given in Table 8. The reason for
the discrepancies between the two calculations is possibly that Beckhoff used a linearized
theory and other approximations. It is remarkable that q is the same in both theories.

At last we give an example of the possibility of more than one braced situation of a
bow. This phenomenon is liable to happen because our theory is non linear and it can
be expected to occur when the tip of the bow is rather flexible with respect to its central
parts. In order to find several situations we prescribe the length 1 of the string instead of
the brace height or fistmele. We have chosen L = 90.4, L0 = 10.2, l = 82.9. Its bending
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Figure 9: Chosen bending stiffness
of ”Asiatic bow”.

(a) (b)

Figure 10: (a) Dimensionless deformation curves of the ”Asiatic bow”. (b) Dimensionless force-
draw curve of the ”Asiatic bow”.
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Table 8: Comparison of results of [3] and this theory.

Beckhoff this theory

F (|OD|) 27.2 45.1
A(|OD|) 748 1240
q 0.393 0.393

Figure 11: Bending stiffness of bow
with three braced positions shown if
Figure 12.

stiffness W (s) is given in Figure 11 and θ0(s) follows from Figure 12. The three braced
positions are drawn in Figure 12 and denoted by 1, 2 and 3. When we perturb these
shapes in a number of ways, it was numerically found that 1 and 3 possibly belong to a
local minimum of the deformation energy and 2 belongs to a maximum. In other words it
seems that the shapes 1 and 3 are stable and 2 unstable although this has not been proved
analytically.

1 2 3

A(|OH|) 1090 1120 1080

5 A model of a bow with 100% shooting efficiency

Although the main subject of this paper is the static deformation of a bow we will show,
as is already announced in the introduction, the essential importance of the string for a
good shooting efficiency.

A shooting efficiency of 100% can easily be obtained if the model of the bow is unrealistic
simple. Consider a bow of which the elastic limbs and the string are without mass, then
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Figure 12: Three possible equilibrium posi-
tions.

it is dear that all the deformation energy is transformed into kinetic energy of the arrow
which is assumed to have a non-zero finite mass. The assumption of a string without
mass seems acceptable, however, the assumption of limbs without mass is not at all in
correspondence with reality. Therefore we now discuss a more realistic model.

The bow consists of a rigid grip of length 2L0 and two rigid limbs of length L1 (Fig-
ure 13.a) which are connected each to the grip by means of an elastic hinge (S for the
upper limb) of strength k > 0. The moment of inertia of the limb with respect to S is J .
The string of length 2l is inextensible and without mass, the mass of the arrow is m > 0.
The assertion is that this bow (Figure 13.a) converts all the deformation energy of the
elastic hinge into kinetic energy of the arrow. From Figure 13.a it follows that

L1 cos ϕ ≤ l − L0 < L1 , ϕ0
def
= arccos

( l − L0

L1

) ≤ ϕ < ϕe
def
= π − arccos

( L0

L1 + l

)
. (28)

Also from that figure we find for the x coordinate ξ of the end of the arrow

ξ = L1 sin ϕ +
(
l2 − (L1 cos ϕ + L0)

2
)1/2

. (29)

Writing down the equations of motion of limbs and arrow we find after a straight forward
analysis,

ξ̈
(
J +

m

2
Q2(ϕ)

)
= JQ′(ϕ)ϕ̇2 − k(ϕ − ϕ̃)Q(ϕ) . (30)

where

Q(ϕ) =
[
L1 cos ϕ + L1

(L1 cos ϕ + L0) sin ϕ(
l2 − (L1 cos ϕ + L0)2

)1/2

] ≥ 0 , ϕ0 ≤ ϕ < ϕe , (31)
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(a) (b)

Figure 13: Two bows each with two elastic hinges and rigid limbs.

and ϕ̃ < ϕ0 is the angle of zero moment of the elastic hinge. Because it can be shown that
Q′(ϕ) ≤ 0 it follows from (30) that

ξ̈ ≤ 0 , ϕ0 ≤ ϕ < ϕe . (32)

An important conclusion results from this equation. During the stretching of the bow (Fig-
ure 13.a) the arrow keeps its contact with the string which, along straight lines, connects
the arrow end to the tips of the limbs.

Next we consider the bow of Figure 13.b. The only difference between this bow and
the previous one is that now the rigid limb ST2 has an infinitely sharp bend at T1. During
positions as drawn this bow behaves exactly as the one of Figure 13.a, hence ξ̈ ≤ 0. When,
however, T2 − T1 coincides partly with the string we can describe the process of shooting
after that situation, by a bow of which the limb is ST1 and of which the half length of the
string is (l − |T1 − T2|). It is easily proved that ξ̇ is continuous during this transition and
hence also for this bow we have ξ̈ ≤ 0 for all possible values of ϕ. This means that mutates
mutandis, for this bow the same conclusion (below (32) holds.

Now consider the situation that the string is nearly stretched

ϕ0 ≤ ϕ ≤ ϕ0 + ε , (33)

for a small number ε > 0. From (32) it follows that the arrow is still in contact with the
string. Suppose that for these values of ϕ the angular velocity of the limb is non-zero,
hence that a positive number δ exists with

0 < δ ≤ −ϕ̇(ϕ) . (34)
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Then it follows from (29)

lim
ϕ→ϕ0

ξ̇(ϕ) = lim
ϕ→ϕ0

Q(ϕ)ϕ̇ = −∞ . (35)

However, this is impossible because then the kinetic energy of the arrow becomes infinite
while the deformation energy of the bow is finite. Hence we have

lim
ϕ→ϕ0

ϕ̇(ϕ) = 0 . (36)

This means that theoretically by the action of the inextensible string without mass all the
kinetic energy of the rigid limbs is conveyed to the arrow, how large J and how small m
may be. This holds for both bows of Figure 13, it holds analogously for bows with rigid
limbs with more sharp bends

That these models are not too unrealistic follows for the type of Figure 13.a from [9]
where on analogous device, a catapult, is described. The elastic hinges are made of strongly
twisted cables to which rigid limbs are connected. The bow of Figure 13.b resembles a
Turkish flight bow [7, page 105]. There it is remarked that the ancient bowyers tried to
keep the elastic parts of the limbs as short as possible in order to obtain a good shooting
efficiency. With other words they tried to realize an elastic hinge in each of the limbs. The
purpose of the bend at T1 in the rigid limb in Figure 13.b is to increase the value of q.

By choosing nonlinear elastic hinges, which are not difficult to design, it is of course
possible to obtain force-draw curves of the type of B2 of Figure 7, hence to obtain a
high static quality factor q. When contact between string and arrow remains during the
shooting, with other words when the acceleration of the arrow is non positive, also 100%
shooting efficiency can be obtained.

It seems likely that suitably designed bows with more elastic hinges or even continuously
distributed elasticity, can also have theoretically an efficiency of 100%. An analytic proof
however will be more complicated in that case.
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